CHEM 3170

Instrumental Analysis
Determination of Trace Metals in Bee Pollen by ICP-MS:
Comparing Dilute and Shoot and Digestion Sample Preparation
Methods

Connor Johnson (T00676477) & Jasleen Morneau (T00660177)

Total Pages: 22

Instructor: Dr. Kingsley Donkor

Abstract

Two different sample preparation methods were compared for inductively coupled plasma–mass spectrometry (ICP-MS) analysis of trace metal concentrations from six bee pollen samples. The ICP-MS used was the Agilent 7900 ICP-MS. The first preparation method was microwave digestion, the instrument used was an Anton Paar Multiwave Go Plus. Digestion samples used a 2% nitric acid and 0.5% hydrochloric acid solution with the five environmental calibration standards using the same solution mix. The second preparation method was the dilute & shoot method. The dilute & shoot samples were prepared using 10% acetic acid, 18 MΩ water and 1% Triton x-100. An environmental calibration standard was also used for the dilute method with 2% acetic acid and 1% Triton x-100. For every element tested within each bee pollen sample the microwave digestion method detected higher concentrations of every metal compared to the dilute & shoot method. Some elements, such as vanadium had 201 times higher concentration detection by the digestion method versus the dilute & shoot method. While others such as arsenic had 0.969 times higher concentration by digestion versus dilute & shoot.

Introduction

In recent years there has been a lot of buzz about bee pollen as a new potential health supplement. Though critical supporting evidence is still lacking when it comes to human testing, consuming bee pollen may have many beneficial results. Some studies have suggested ingesting bee pollen may act as a natural medicine as it has demonstrated properties such as: antifungal, antimicrobial, antiviral, anti-inflammatory, and anticancer immunostimulating. There is also ongoing research regarding bee pollen's potential to alleviate allergy symptoms. By consuming small amounts of local pollen during the allergy season, it is thought to allow your body to build up a natural immunity to the pollen in your area and some human studies found results which support this claim. Some European countries such as Germany, have declared bee pollen as a medicine. Herbal medicine options are popular in Germany, and as such they are well regulated. That is not the case for supplements and herbal medicine in North America.

Bee pollen currently has a relatively small market as a supplement compared to commercial protein powders. However, even with the popularity of protein powders, food and health authorities in North America have yet to significantly regulate the production of any supplements, including bee pollen. This may lead to serious health issues as supplements such as protein powder and bee pollen may contain trace metals above safe daily limits of consumption.

To analyze the amount of trace metals in bee pollen an inductively coupled plasma – mass spectrometer was used (ICP-MS). The instrument is reliable and sensitive to ensure accurate quantification and identification of trace metals present in the pollen samples. The instrument works by adding the liquid sample into the high temperature plasma which ionizes the

elements within the sample. The ionized elements are detected, quantified, and identified by the MS based off their mass to charge ratios.

There are two ways of preparing samples for ICP-MS analysis. The first way of preparing a sample is by microwave digestion. This method uses a concentrated acid and a digestion instrument to dissolve the sample. Microwave digestion has the benefit of fully destroying the organic material within the sample which leads to a highly cleaned sample with the elements fully dissociated within the matrix. The dilution method (dilute & shoot) uses dilute acids, dilute alkali, or ultrapure water as the diluent depending on the sample requirements then the sample is injected directly into the instrument. The dilute & shoot technique uses significantly less energy than the microwave digestion, as well as less hazardous chemicals, which makes the dilute method more preferable from a green chemistry perspective.

In this experiment, the microwave digestion and dilute & shoot preparation methods will be employed to determine if there is a notable detectable difference between the two. Five bee pollen samples from regions across Canada (MVE, RMB, DBA, PBC and DGO) and one from Spain (PBS) will be prepared in triplicate using the two different methods and analyzed by ICP-MS. The results of this report will be used to determine which sample preparation method is more precise, as well as to notice any trends occurring between the two.

Methods and Instrumental Parameters

 Table 1. Instrument Parameters for Agilent 7900 ICP-MS.

Parameter	Setting
RF Power	1550 W
RF Matching	1.80 W
Carrier Gas	1.00 L/min
Makeup Gas	0.10 L/min
He Gas Flow	5.0 mL/min
H ₂ Gas Flow	6.0 mL/min
Energy Discrimination	5.0 V
Nebulizer	MicroMist Scott Double
Spray Chamber	Pass

Table 2. Instrument Parameters for Anton Paar Multiwave Go Plus.

		Steps	
No.	Ramp (mm:ss)	Temp (°C)	Hold (mm:ss)
1	10:00	180	15:00
		Data	
			1
Application Type	Vessel Mode	Temperature Control Mode	Temperature Limit (°C)
	Vessel Mode Multi vessel	_	
Туре		Mode	(°C)

Table 3. Standards and their corresponding concentration of the 200.0 ppb intermediate environmental stock solutions diluted with 2% HNO₃ and 0.5% HCl in the microwave digestion standa for the dilute and shoot method standards were identical for the intermediate solution but were diluted with 2% acetic acid and 1% Triton X-100. These values will quantify the sample in the two different sample matrices on the ICP-MS.

Standard	Volume (mL) of 200.0 ppb Intermediate	Total Volume (mL)	Concentration (ppb) of Standard
0	-	50.0	0.0
1	0.025	50.0	0.10
2	0.250	50.0	1.00
3	2.500	50.0	10.0
4	12.500	50.0	50.0
5	25.000	50.0	100

Microwave digestion sample preparation:

Six different bee pollens were first ground into a fine powder by hand using a mortar and pestle. Approximately 0.5000 g of each sample was added to the microwave digestion tube. Next 15 mL of nitric acid was added to the digestion tube and the process was run according to **Table 2.** Once out of the microwave, the samples were vented and left to cool until they were at a safe temperature to handle. Each sample was gravity filtered and diluted to the 50 mL mark on the Falcon tube with 2% nitric acid and 0.5% hydrochloric acid solution. According to **Table 3.** Five environmental calibration standards were prepared with 2% nitric acid and 0.5% hydrochloric acid solution to the 50 mL mark on each Falcon tube. Next the samples were analyzed using the ICP-MS with the instrumental parameters shown in **Table 1.**

Dilute & Shoot sample preparation:

Six different bee pollens were first ground into a fine powder by hand using a mortar and pestle. To dissolve the bee pollen into solution approximately 0.2000 g of each pollen sample was added to a 50 mL Falcon tube. To each tube 10 mL of 10% acetic acid was and using a glass rod the pollen was mixed until the solution appeared homogeneous. The Falcon tubes were diluted to 50 mL with 18 M Ω water. The diluted stock samples were filtered to remove any remaining particulates. Next 2 mL of the stock sample solutions were combined with 5 mL of 1% Triton x-100 and diluted once more to the 50 mL mark using 18 M Ω water. The standards were prepared using an environmental calibration standard with 1 mL of 2% acetic acid and 5 mL of 1% Triton x-100 in a 50 mL Falcon tube. Next the samples were analyzed using the ICP-MS with the instrumental parameters shown in **Table 1**.

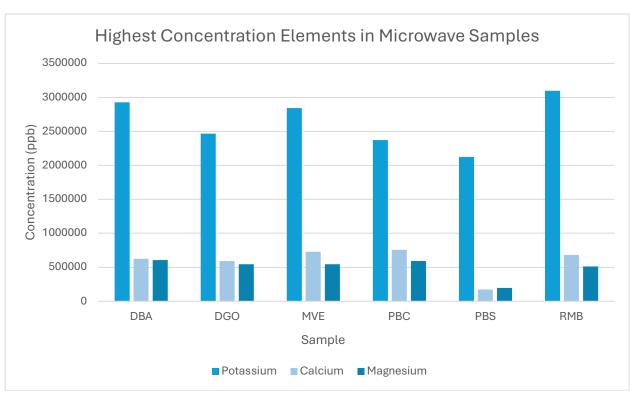

Results

Table 4. Analysis of microwave digested MVE bee pollen sample by ICP-MS. The concentration is the average of the sample triplicates for each element.

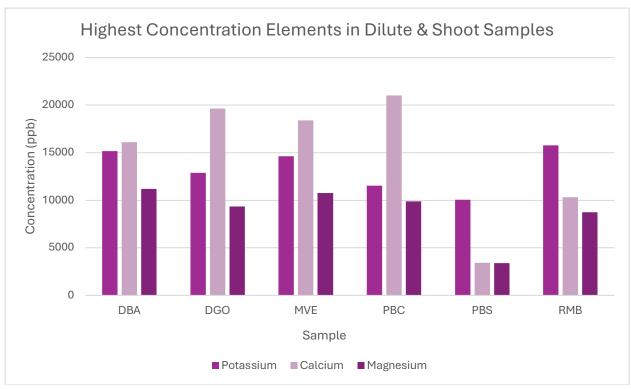

Element	Concentration (ppb)	Standard Deviation (ppb)	Mass of Element (ng)	Mass of element per gram of bee pollen (ng/g)
Sodium (²³ Na)	66148.6964	11656.6378	3.31	6.61
Magnesium (²⁴ Mg)	543795.289	43206.3073	27.2	54.4
Aluminum (²⁷ Al)	33732.1794	4696.14531	1.69	3.37
Potassium (³⁹ K)	2844710.16	209501.521	142	284
Calcium (⁴⁴ Ca)	728298.844	59471.8585	36.41	72.8
Vanadium (51V)	74.9319833	10.5362314	0.00375	0.00749
Chromium (52Cr)	44.6093067	5.55843974	0.00223	0.00446
Manganese (55Mn)	6835.17235	488.043486	0.342	0.684
Iron (⁵⁶ Fe)	50653.0492	5107.21224	2.53	5.07
Cobalt (59Co)	30.67693	4.20658813	0.00153	0.00307
Nickel (60Ni)	445.153837	52.5788249	0.0223	0.0445
Copper (⁶³ Cu)	801.34005	58.9469231	0.0401	0.0801
Zinc (64Zn)	4536.28729	294.886303	0.227	0.454
Zinc (66Zn)	11.9817467	0.99206796	0.000599	0.00120
Arsenic (75As)	118.34139	4.43465125	0.00592	0.0118
Selenium (⁷⁸ Se)	583.203347	30.2619951	0.0292	0.0583
Molybdenum (98Mo)	10.85834	1.709578	0.000543	0.00109
Cadmium (111Cd)	2.47934333	1.04953403	0.000124	0.000248
Antimony (123Sb)	951.841397	76.1349087	0.0476	0.0952
Barium (¹³⁵ Ba)	8.06066	0.94646058	0.000403	0.000806
Thallium (²⁰⁵ Tl)	32.23933	2.32286866	0.00161	0.00322
Lead (²⁰⁸ Pb)	66148.6964	11656.6378	3.31	6.61

Table 5. Analysis of dilute & shoot MVE bee pollen sample by ICP-MS. The concentration is the average of the sample triplicates for each element, and have been adjusted to match the mass used for the digestion samples.

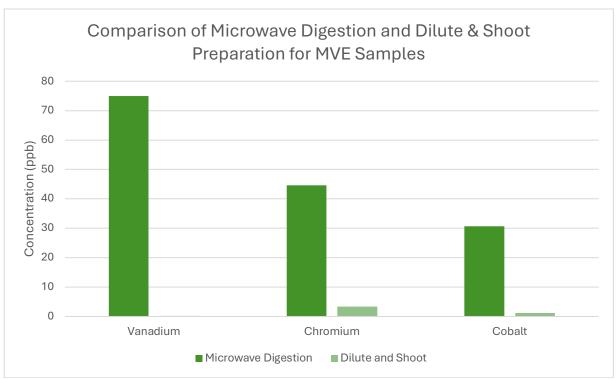

Element	Concentration (ppb)	Standard Deviation (ppb)	Mass of Element (ng)	Mass of element per gram of bee pollen (ng/g)
Sodium (²³ Na)	3215.37573	16.3306364	0.161	0.804
Magnesium (²⁴ Mg)	26877.3817	145.063784	1.34	6.719
Aluminum (²⁷ Al)	130.088658	22.1066576	0.00650	0.0325
Potassium (³⁹ K)	36551.1386	249.639799	1.83	9.14
Calcium (⁴⁴ Ca)	46015.0125	237.498941	2.30	11.5
Vanadium (51V)	0.37411667	0.20095375	0.0000187	9.35E-05
Chromium (52Cr)	8.46060833	0.57960256	0.000423	0.00212
Manganese (55Mn)	618.942525	8.54718092	0.0309	0.155
Iron (⁵⁶ Fe)	745.620383	52.1461897	0.0373	0.186
Cobalt (59Co)	3.03318333	0.09241476	0.000152	0.000758
Nickel (60Ni)	147.015033	1.42599609	0.00735	0.0368
Copper (63Cu)	83.2769	3.44368806	0.00416	0.0208
Zinc (64Zn)	1506.19402	14.9549093	0.0753	0.377
Zinc (66Zn)	12.37055	0.30387087	0.000619	0.00309
Arsenic (75As)	2.26623333	0.79945156	0.000113	0.000567
Selenium (⁷⁸ Se)	0	0	0	0
Molybdenum (98Mo)	9.41185	0.27076973	0.000471	0.00235
Cadmium (111Cd)	0.36586667	0.08486382	0.0000183	9.15E-05
Antimony (123Sb)	80.703675	0.82065773	0.00404	0.0202
Barium (¹³⁵ Ba)	0.51924167	0.01579813	0.0000260	0.000130
Thallium (²⁰⁵ Tl)	20.3849	0.85513888	0.00102	0.00510
Lead (²⁰⁸ Pb)	3215.37573	16.3306364	0.161	0.804

Figure 1. ICP-MS analysis of microwave-digested samples at the highest concentration of the elements.

Figure 2. ICP-MS analysis of dilute & shoot samples at the highest concentration of the elements.

Figure 3. Comparison of a few trace elements present in the MVE sample for the two sample preparation methods. Vanadium in the dilute & shoot method was detected in extremely low concentration ($^{51}V = 0.374116667$ ppb) and is invisible in this figure.

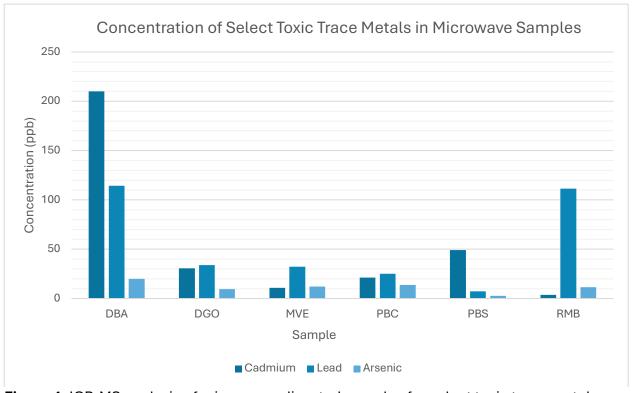


Figure 4. ICP-MS analysis of microwave-digested samples for select toxic trace metals.

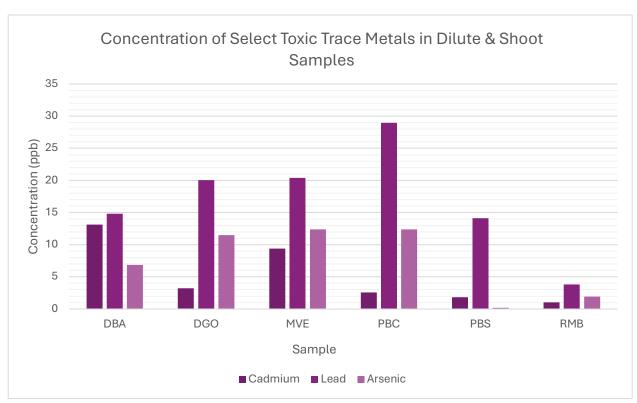
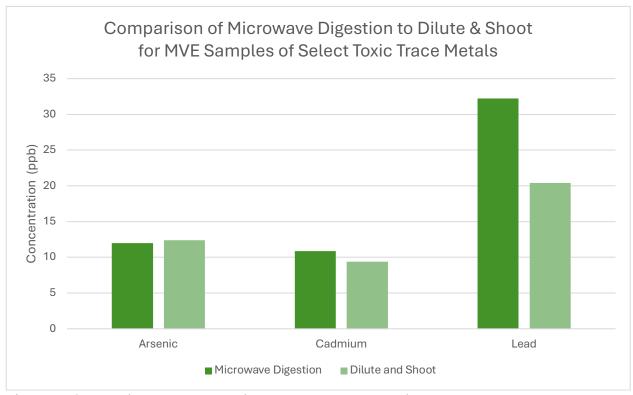



Figure 5. ICP-MS analysis of dilute & shoot samples for select toxic trace metals.

Figure 6. Comparison of select toxic trace metals present in the MVE sample for the two sample preparation methods.

Calculations

Concentration (ppb) in standard 1:

$$C_1 = 200.0 \text{ ppb}$$

 $V_1 = 0.025 \text{ mL}$
 $V_2 = 50.0 \text{ mL}$

Concentration (ppb) =
$$\frac{(200.0 \text{ ppb})(0.025 \text{ mL})}{50.0 \text{ mL}} = 0.10 \text{ ppb}$$

Microwave Digestion Samples:

MVE sample averaging of vanadium for digestion samples:

$$MVE1 = 64.80593 \text{ ppb}$$

$$MVE2 = 85.83534 ppb$$

$$MVE3 = 74.15468 ppb$$

MVE Average =
$$(64.80593 + 85.83534 + 74.15468) / 3 = 74.93198 \text{ ppb}$$

Amount of vanadium (ng) in MVE 50.0 mL digestion sample:

Vanadium =
$$74.93198$$
 ug/L
Volume of sample = 50.0 mL = 0.0500 L

vanadium (ng) =
$$74.93198 \frac{\text{ug}}{\text{L}} \times 0.0500 \text{L} \times \frac{1 \text{ ng}}{1000 \text{ ug}} = 0.00375 \text{ ng}$$

Sample calculation of an element in the sample: Vanadium concentration in each gram of bee pollen for microwave digestion (ng/g):

vanadium (ng/g) =
$$\frac{0.00375 \text{ ng}}{0.4973 \text{ g}} = 0.00753 \frac{\text{ng}}{\text{g}}$$

Dilute & Shoot Samples:

To match the digestion sample values, the concentrations need to be multiplied to have matching sample masses:

$$\frac{Digestion \ mass}{Dilute \ mass} \ ratio = \frac{5.000 \ g}{2.000 \ g} = 2.5$$

All subsequent values will be multiplied by 2.5 to ensure the concentrations are comparable to 0.5 g of sample.

MVE sample averaging of vanadium for digestion samples:

MVE1 = 0.37805 ppb

MVE2 = 0 ppb

MVE3 = 0.07089 ppb

MVE Average =
$$(0.37805 + 0 + 0.07089) / 3 = 0.14965 \text{ ppb}$$

Amount of vanadium (ng) in MVE 50.0 mL Dilute & Shoot sample:

Vanadium =
$$0.14965 \text{ ug/L x } 2.5 = 0.37413 \text{ ug/L}$$

Volume of sample = $50.0 \text{ mL} = 0.0500 \text{ L}$

vanadium (ng) = 0.37413
$$\frac{\text{ug}}{\text{L}} \times 0.0500 \text{L} \times \frac{1 \text{ ng}}{1000 \text{ ug}} = 1.87 \times 10^{-5} \text{ ng}$$

Sample calculation of an element in the sample: Vanadium concentration in each gram of bee pollen for microwave digestion (ng/g):

vanadium =
$$1.87 \times 10^{-5}$$
 ng
mass of bee pollen in MVE1 sample = 0.2022 g

vanadium (ng/g) =
$$\frac{1.87 \times 10^{-5} \text{ ng}}{0.2022 \text{ g}} = 9.25 \times 10^{-5} \frac{\text{ng}}{\text{g}}$$

Difference between the two methods:

Vanadium:

Digestion mass: 0.00375 ng

Dilute & Shoot: 1.87 x10⁻⁵ ng

Difference =
$$\frac{0.00375 \text{ ng}}{1.87 \times 10^{-5} \text{ ng}} = 201 \times 10^{-5} \text{ ng}$$

Digestion has a 201x higher concentration than dilute and shoot.

Arsenic:

Digestion mass: 0.000599 ng

Dilute & Shoot: 0.000619 ng

Difference =
$$\frac{0.000599 \text{ ng}}{0.000619 \text{ ng}} = 0.969 x$$

Digestion has a 0.969 x higher concentration than dilute and shoot.

Discussion

In this experiment, six bee pollen samples were prepared through two different sample preparation methods: microwave digestion, and dilute & shoot. ICP-MS then analyzed the samples to detect the trace metals present within the bee pollen to see the difference between the two methods. Moving forward, only the data from the MVE bee pollen sample will be discussed to simplify the amount of data talked about as the key point is the differences between the two. Based on **Table 4**, some of the highest concentrations of trace elements in the microwave digestion method were found to be potassium (2844710.16 ppb), calcium (728298.844 ppb), and magnesium (543795.289 ppb). Following this, as per **Table 5**, some of the highest concentrations of trace elements in the dilute & shoot method were found to be calcium (46015.01253 ppb), potassium (36551.13863 ppb), and magnesium (26877.3817 ppb). The reason for these to be highest in concentration can be attributed to the soil that the plants are sourced from having high concentrations of these metals.

When comparing these three elements across the two sample preparation methods, the microwave-digestion method far exceeds the dilute & shoot data. Specifically for these three elements, microwave-digesting was detected up to 78 times more than the dilute & shoot method. When looking at lesser detected metals, this difference can be seen as large as 201 times when it comes to vanadium. However, it should be stated that this trend isn't seen for all of the elements, as arsenic is lower in concentration in the digestion sample when compared to the dilute & shoot samples (12.4 ppm and 12.0 ppm, respectively). Across the board, the digestion method far surpasses the concentrations of the dilute & shoot samples, with a few outliers existing among the elements.

Along with the trend seen with the arsenic in the dilute & shoot samples, molybdenum was completely undetectable within the dilute & shoot sample. Interestingly, molybdenum was in abundance in the digestion sample (583.2033467 ppb). One suggestion is that lower concentrations of elements could remain undetected with the ICP-MS, however, all the other elements present in the microwave-digestion samples were appearing in the dilute & shoot samples. This could suggest that some matrix effects were occurring within the dilute & shoot samples, where the acetic acid may not have effectively solubilized or stabilized the molybdenum, leading to molybdenum precipitating or adsorbing to the sides of the falcon tube, preventing detection. The Triton X-100 could also have interfered with the molybdenum by interfering with the ionization in the plasma or forming a complex with molybdenum in solution. In future experiments, trying to find a different combination of acetic acid and Triton X-100 should prevent the lack of molybdenum from being detected.

When it comes to the toxic trace metals of interest, arsenic, cadmium, and lead are highlighted to show the detection difference between them. According to **Figure 6**, arsenic is shown to have a marginally higher detection within the dilute & shoot sample (12.4 ppb vs 12.0 ppb), however, slightly lower cadmium levels (9.41 ppb vs 10.9 ppb) and greatly lower lead levels (20.4 ppb vs 32.2 ppb) when compared to the microwave-digestion method. While arsenic and cadmium are relatively close to each other in concentration, the difference in lead is problematic. The bee pollen used in this experiment is marketed and sold as a health supplement, so any trace metals detected should be accurate due to regular human consumption. With respect to lead, the difference between the two is greater than the 5 ppb acceptable concentration from HealthLink BC (2023). This notable difference in a toxic metal between the two samples can be the difference between the safe consumption of a food product or lead poisoning, so more work

should be done to improve on the dilute & shoot method, or microwave digestion should only be used instead.

In future experiments, some aspects of the preparation techniques could be significantly improved, such as the pulverization of the bee pollen samples. Grinding the pollens by hand led to inconsistencies in granule size and overall powder consistency varied greatly. This could have affected the ability of the pollen to create a homogeneous mixture to be analyzed by the ICP-MS, this was particularly an issue for the dilute & shoot preparation technique. In the future, a coffee grinder should be used to fully grind down the pollen. It is likely when preparing the dilute & shoot stock solutions that not all the elements within the pollen homogenized, as granules were viewed in the filter after gravity filtration. To increase the sample fully dissolving work may be done to find a different acid to use for sample preparation that is also compatible with the ICP-MS.

In addition to this, some work should be done to assess the ICP-MS as some of the values in comparison seem extremely high. In the MVE sample, the potassium was in extremely high concentration (2844710.158 ppb). In addition to this, all of the toxic trace metals are above the daily allowable intake, which when previously analyzed were within the allowable levels of consumption. It is safe to say that the quantification of trace metals within the bee pollen samples is not accurate, and details should not be inferred from this report. This report just shows the difference in the concentration of trace metals between the two sample preparation methods, and the relationship can be determined from the results given.

Conclusion

When comparing the dilute & shoot method to the microwave digestion method of sample preparation for analysis with ICP-MS it was found that for every element tested within the six bee pollen samples the microwave digestion method resulted it significantly higher concentrations of detection. There was variation between each element concentration and sample with some values for the digestion detecting 0.969 to 201 times more of that element compared to the dilute & shoot results. In future comparisons between these methods, a coffee grinder should be used to process the bee pollen into a fine consistent powder, as well as the dilute & shoot method may be significantly improved if higher concentrations of both acetic acid and Triton x-100 was used.

Literature Cited

- Donkor, K. CHEM 3100 Lecture notes. Fall 2024.
- Komosinska -Vassev, K., Olczyk, P., Kazmierczak, J., Mencer, L., Olczyk, K. (2015) Bee Pollen: Chemical Composition and Therapeutic Application. *Evidence-Based* complementary and Alternative Medicine. 2015 (1), 297425. https://doi.org/10.1155/2015/297425
- Saarinen, K., Jantunen, J., Haahtela, T. (2010) Birch Pollen Honey for Birch Pollen Allergy A Randomized Controlled Pilot Study. *Int Arch Allergy Immunol.* 155(2), 160-166. https://doi.org/10.1159/000319821
- Saper, R. (2024). Bee Pollen: What it is and Why You Really Don't Need it. *Cleveland Clinic*. https://health.clevelandclinic.org/bee-pollen-benefits (Accessed: November 25th, 2024).
- HealthLink BC. *Lead in Drinking Water*; HealthLink BC, 2023.

 https://www.healthlinkbc.ca/healthlinkbc-files/lead-drinking-water (accessed Nov 26, 2024).

7813 41912706 11.91052 6365 4723.7716 13.43181 2174 4473.6952 11.4588067	397.34385 708.26365 4	27.1895933	6927.68926 57896.7808	52.5584433 32.402237	683633.9487 52.55	3097715.37	512988.1265 24077.3691	101707.53 51	Average
4723.7716	708.26365								
4191.2/06	10000	29.63969	7461.83573 61767.7224	59.33227 36.07207	720782.8583 59.	3283572.48	545124.4339 25751.1565	132358.61 54	1RMB3
	360.14172 636.27813 4	26.62096	6596.53917 60082.9604	59.07501 32.34646	654663.2786 59.	2904995.23	483654.9139 27054.3789		1RMB2
2344 4506.0433 9.03409	350.75527 694.62344 4	25.30813	6724.69287 51839.6597	39.26805 28.78818	675455.7093 39.	3104578.42	510185.0317 19426.5718	94450.964 51	1RMB1
7324 65.240089 0.77438743	28.766531 13.7397324 6	1.98738335	258.035682 1443.63395	1.76013181 4.0520216 258.035682	76.299219 1.760	14 68498.8775 5176.299219	7555.173789 602.556714	11659.312 75	STDev
3927 2255.9283 2.79767	378.81502 415.313927	97.9571733	6132.78076 16066.6062	9.39522333 40.039317 6132.78076		32 2124759.33 172029.0587	198781.6824 7196.22532	61826.113 19	Average
9558 2328.6592 2.25888	406.52446 430.99558	5701 100.19573	6398.14341 15388.5701	10.87615 44.55057	177739.5747 10.	2201481.77	207058.6268 6895.00964	49556.943 20	1PBS3
5746 2236.5608 3.68509	380.8239 409.55746	3.807 96.40047	6117.44257 15086.807	9.86025 38.85855		51 2103051.84 167645.2133	197030.6345 7889.99651	63160.682 19	1PBS2
8874 2202.5648 2.44904	349.09671 405.38874	97.27532	5882.7563 17724.4417	7.44927 36.70883		98 2069744.39 170702.3882	192255.786 6803.6698		1PBS1
22.9469531 143.05312 1.36513333	4.8556734 22.9469531	1.50133937	518.911529 4131.06212	17.4497935 4.5582335 518.911529		01 79441.818 35895.64447	31314.99855 4923.31501	7693.1749 31	STDev
0447 3731.0824 13.7409767	199.171 584.0447	6899 26.6303	7398.63501 42555.6899	46.19898	7700.7911 84.4942867	15 2374360.1 757700.7911	590168.9954 30403.2915	69555.477 59	Average
0235 3795.54 15.26258	193.78128 581.70235	28.35466	7965.86421 47297.3043	104.2649 50.1398	787551.9173 104	2408258.35	608503.5802 35927.5192	66761.844 60	1PBC3
3567.1414	562.35876	25.9229		47.25015	T	2283592.39		T	1PBC2
3830.5658	608.07299	25.61334		41.20699		2431229.57			1PBC1
9231 294.8863 0.99206796	52.578825 58.9469231	4.20658813	488.043486 5107.21224	10.5362314 5.5584397	59471.85853 10.53	209501.521	43206.30727 4696.14531	11656.638 43	STDev
4005 4536.2873 11.9817467	445.15384 801.34005 4	30.67693	6835.17235 50653.0492	74.9319833 44.609307	728298.8441 74.93	2844710.16	543795.2888 33732.1794	66148.696 54	Average
8068 4287.7998 11.05455	388.14092 746.18068 4	26.65801	45.05229 6420.47445 48307.8213	74.15468 45.05229		28 2718519.1 680769.4973	527037.1659 32706.6928	54791.555 52	1MVE3
8.457 4862.1455 13.02795	491.73454 863.457	35.04893	7372.98413 56511.6579	85.83534 49.933	794989.3005 85.	3086545.02	592870.2834 38856.3286	65571.172 59	1MVE2
8247 4458.9165 11.86274	455.58605 794.38247 4	30.32385	6712.05846 47139.6685	64.80593 38.84263	709137.7343 64.	2729066.35	511478.417 29633.517	78083.361 5	1MVE1
7014 123.47554 0.33728263	14.594503 37.8437014 :	0.93521652	200.881865 5206.30699	6.3825132 4.9981483 200.881865		99 109344.665 34828.51213	25259.16817 3562.52799	23840.263 25	STDev
9787 4051.0792 9.64419	209.13857 589.849787 4	29.26068	9138.30497 47147.5876	54.5366133 86.994207	590679.3316 54.53	2468155.75	545974.1806 34883.723	96305.434 54	Average
7314 4035.1447 9.3431	192.45491 583.47314 4	28.53024	9370.13816 45825.3892	57.3281 87.23281	589106.629 5.	2463722.84	555561.4944 36366.6241	96967.507 55	1DG03
4181.7484 10	630.47672	30.31472		91.86878	T	2579649.45		T	1DG02
5995 3936.3444 9.5808	219.53982 555.5995	28.93708	9028.98774 42729.8606	47.23391 81.88103	556663.8121 47.	2361094.94	517324.9555 30819.268	72141.03 51	1DG01
777.58626	39.8611715	19.5606103		55.982813		206154.297			STDev
6987 7304.1036 19.8666267	609.06391 867.836987	74.2903333	27972.2224 85734.6164	117.428097 200.50368	627252.3656 117.4	2925736.07	606232.3799 47560.379	87958.691 60	Average
3941 7500.51 15.14373	599.63414 829.03941	88.31564	27419.358 83054.393	109.73978 241.5067	609536.2784 109.	2893850.05	607963.8515 51373.8265	97443.714 60	1DBA3
_	673.38938 908.68278	82.61018	29277.1682 113820.807	188.19813 136.72239	674862.7274 188.	3145975.56	656942.8702 64209.7793		1DBA2
7	7	9 51.94518	27220.141 60328.6489	54.34638 223.28196	-	2737382.58	179	78937.628 55	1DBA1
		Conc. [ppb]	Conc.[ppb] Conc.[ppb] Conc.[ppb] Conc.[ppb]	opb Conc.[ppb]		Conc.[ppb]		Conc.[ppb] Conc.[ppb]	Sample Name
He] 66 Zn [He] 75 As [He]	60 Ni [He] 63 Cu [He] 66	59 Co [He]	52 Cr [He] 55 Mn [He] 56 Fe [He]		44 Ca [He] 51 V [He]	39 K [He]	k [He] 27 Al [He]	23 Na [He] 24 Mg [He]	

Appendix 1. Concentrations of elements in the bee pollen samples from the microwave-digestion method.

Corrected	Average STDev	RMB1 RMB2 RMB3	Corrected	Average	PBS1 PBS3 PBS2	Corrected average	Average STDev	PBC1 PBC2 PBC3	Corrected average	Average STDev	MVE1 MVE2 MVE3	Corrected	Average STDev	DG01 DG02 DG03	Corrected	Average	Sample Name DBA1 DBA2 DBA3
	318.31573 4.7658388	323.24137 313.72764 317.97818	962.68844	385.07538 10.341017	395.54343 384.81644 374.86626	3312.1152	1324.8461 19.009147	1346.6425 1311.7042 1316.1915	3215.3757	1286.1503 16.330636	1304.8224 1279.0957 1274.5328	2850.4763	1140.1905 23.110895	1165.5214 1120.2536 1134.7966	2057.3062	822.92246	23 Na [He] Conc.[ppb] 841.1298 807.4036 820.23398
	8758.438963 68.660229	8828.38214 8691.13796 8755.79679	8484.554475	3393.82179 39.36167065	3438.43591 3363.99633 3379.03313	24736.09567	9894.438267 127.4944508	10040.26193 9839.03156 9804.02131	26877.3817	10750.95268 145.0637841	10916.54536 10690.01497 10646.29771	23393.02638	9357.21055 188.4746185	9535.40676 9159.91233 9376.31256	27990.16044	11196.06418	24 Mg [He] Conc.[ppb] 11369.89938 11090.84835 11127.4448
	43.9271933 6.53888823	40.65368 51.45633 39.67157	58.261	23.3044 2.87453373	23.76217 25.92258 20.22845	122.749333	49.0997333 0.98034554	50.08067 48.11998 49.09855	130.088658	52.0354633 22.1066576	46.54577 33.19092 76.3697	123.69295	49.47718 14.4280064	66.13381 40.85753 41.4402	102.453608	40.9814433	27 Al [He] Conc.[ppb] 37.51057 34.36863 51.06513
	15766.2602 258.860398	16062.1044 15655.2958 15581.3805	25112.0824	10044.833 173.813563	10243.4241 9970.68329 9920.39146	28801.9125	11520.765 218.658431	11773.0894 11402.4015 11386.8041	36551.1386	14620.4555 249.639799	14889.12 14395.6546 14576.5918	32161.3095	12864.5238 251.441352	13136.1692 12639.9354 12817.4668	37923.1406	15169.2562	39 K [He] Conc.[ppb] 15494.8594 14848.5173 15164.3921
	10322.63809 222.4251842	10566.6751 10269.95513 10131.28405	8577.743025	3431.09721 81.83062755	3342.87491 3504.51486 3445.90186	52584.76356	21033.90542 237.2046351	21248.37575 21074.20974 20779.13078	46015.01253	18406.00501 237.498941	18581.97187 18500.18221 18135.86095	49113.89748	19645.55899 357.2644417	20030.72682 19325.02122 19580.92894	40263.5622	16105.42488	39 K [He] 44 Ca [He] Conc.[ppb] Conc.[ppb] 15494.8594 16290.85955 14848.5173 16098.9141 15164.3921 15926.50099
	0.37824 0.6551309	1.13472 0 0	0	_ 0 0	000	0.295425	0.11817 0.11817	0.11817 0.23634 0	0.37411667	0.14964667 0.20095375	0.37805 0 0.07089	0.82721667	0.33088667 3.0388967 336.67706 0.31969213 0.4377111 3.05207795	0.66175 0.30723 0.02368	1.12258333		51 V [He] 5 Conc.[ppb] 0.4018 0.59086 0.35444
	2.5960767 2 1.6962396 4	2.16573 4.46604 1.15646	4.305475 3	1.72219 1 0.4070255 3	2.14776 1.33667 1.68214	7.5345917	3.0138367 0.4900164	3.28926 2.44808 3.30417	8.4606083	3.3842433 0.5796026	3.57444 3.84485 2.73344	7.5972417	3.0388967 0.4377111	3.52952 2.68843 2.89874	7.084025		52 Cr [He] 55 Mn [He] Conc.[ppb] Conc.[ppb] 989.824 2.20786 989.7495 2.9287 949.7495 3.36427 979.05588
	204.000083 4.45167278 6	205.56394 207.45881 198.9775	381.301758 1	152.520703 6 3.94563427 1	151.20489 156.95611 149.40111	598.749642	239.499857 2.12922039	241.9517 238.43182 238.11605	618.942525	247.57701 8.54718092	253.11969 237.73366 251.87768	841.69265		339.09196 333.24669 337.69253	2432.19189		
	210.67609 66.3784453	266.13841 228.76028 137.12958	16.3835333	6.55341333	19.66024 0	639.702308	255.880923 44.7447035	306.12725 220.33814 241.17738	745.620383	298.248153 52.1461897	318.07713 239.09614 337.57119	399.927742	159.971097 87.4760622	248.86657 73.98714 157.05958	338.6188		56 Fe [He] 5 Conc.[ppb] C 186.36655 53.22495 166.75106
	0.68719 0.06980188	0.725 0.72993 0.60664	4.90328333	1.96131333 0.01586121	1.94322 1.97282 1.9679	1.92346667	0.76938667 0.04381711	0.72009 0.8039 0.78417	3.03318333	1.21327333 0.09241476	1.31686 1.13928 1.18368	2.47830833	0.99132333 0.10010847	1.0801 0.88282 1.01105	4.09769167	1.63907667	59 Co [He] 6 Conc.[ppb] C 1.69662 1.61769 1.60292
	34.64891 0.482099	34.41032 35.20378 34.33263	34.403358	13.761343 0.9407352	12.69318 14.46646 14.12439	35.194217	14.077687 0.097193	14.04652 14.18664 13.9999	147.01503	58.806013 1.4259961	59.80168 57.17242 59.44394	38.992283	15.596913 0.2100677	15.38431 15.80435 15.60208	70.896142		60 Ni [He] 6 Conc.[ppb] C 28.43627 27.42505 29.21405
	13.17307 1.08662906	14.22373 13.24175 12.05373	42.9433417	17.1773367 0.5010788	17.719 16.73035 17.08266	128.850917	51.5403667 4.52996374	46.616 52.47496 55.53014	83.2769	33.31076 3.44368806	34.30389 29.47964 36.14875	131.43725	52.5749 12.2226513	49.81499 41.96818 65.94153	99.5961		63 Cu [He] 6 Conc.[ppb] 0 47.62323 35.14246 36.74963
	19.606903 0.3741899 0	19.28273 19.5216 20.01638	23.737892 (9.4951567 C	9.02962 10.00893 9.44692	1964.6337	785.85349 4 5.7036011 (785.67581 780.24081 791.64386	1506.194	602.47761 14.954909 (600.23014 588.77363 618.42905	2198.896 1	879.55839 4 15.640198 (880.19511 863.60956 894.87051	1314.8278		66 Zn [He] 7/ Conc.[ppb] C 533.19107 515.75828 528.84396
	0.77177 0.02620593	0.80203 0.75664 0.75664	0.16390833	0.06556333	0.19669 0	12.3956417	4.95825667 0.38439693	5.40212 4.7364 4.73625	12.37055	4.94822 0.30387087	5.29636 4.73625 4.81205	11.4622583	4.58490333 0.25867676	4.82718 4.61506 4.31247	6.83479167	2.73391667	75 As [He] 78 Conc.[ppb] Co 2.82974 2.33045 3.04156
	0.2014433 0.3489101	0.60433 0	0.7554083	0.3021633	0 0.60433 0.30216	6.5469	2.61876 3.1011752	6.04329 0 1.81299	2.2662333	0.9064933 0.7994516	1.20866 0 1.51082	5.5396833	2.2158733 0.1744579	2.11515 2.11515 2.41732	5.287875	2.11515	
	0 0	000	0		000	0	0 0	0 0 0	0	_ 0 0	0 0 0	0	_ 0 0	0 0 0		0	Mo [He] 11 nc.[ppb] Co 0 0
	0.40655 0 0.04517 0	0.40655 0.36138 0.45172	1.8351083	0.7340433 0.011295	0.73404 0.72275 0.74534	2.5693417	1.0277367 0.0407788	1.06165 1.03907 0.98249	9.41185 0	3.76474 0 0.2707697 0	4.07733 3.6028 3.61409	3.20965	1.28386 0.1285102	1.32162 1.38926 1.1407	13.148617	5.2594467	Se [He] 95 Mo [He] 111 Cd [He 123 Sb [He] 135 Ba [He] Lippbi Conc. [ppbi Conc. [ppbi
	0.06984667 5 0.04347772 0	0.11972 0.03993 0.04989	0 3	0 1	0 0 0	0 7	0 3	0 0 0	0.36586667	0.14634667 0.08486382 0	0.20954 0.17961 0.04989	0	0 0	0 0 0	0 0		3 Sb [He] 13 onc.[ppb] Cc 0 0
	55.02589333 0.225603785	55.27874 54.84517 54.95377	37.48356667	14.99342667 0.774676064	15.1741 14.14438 15.6618	77.90570833	31.16228333 0.711769943	31.26996 30.40281 31.81408	80.703675	32.28147 0.820657732	31.92008 33.2208 31.70353	55.367725	22.14709 0.202976667 0.553579474 0.010582374	22.54452 21.5148 22.38195	144.4749 0.469316667	57.78996	35 Ba [He] 2 onc.[ppb] 0 58.09689 55.92935 59.34364
	0.500366667 0.012998497	0.48584 0.50436 0.5109	0.191541667	0.076616667 0.020704479	0.09695 0.05556 0.07734	0.592775	0.23711 0.01214835	0.24619 0.22331 0.24183	0.519241667	0.207696667 0.015798134	0.22331 0.19172 0.20806	0.507441667	0.202976667 0.010582374	0.1939 0.20043 0.2146	0.469316667	0.187726667	205 TI [He] : Conc. [ppb] 0.18627 0.1939 0.18301
	1.526406667 1.261383919	2.2517 2.25763 0.06989	14.12515833	5.650063333 1.263080596	5.66602 6.90509 4.37908	28.94035833	11.57614333 4.271085671	16.49463 8.80299 9.43081	20.3849	8.15396 0.855138875	8.87545 7.20939 8.37704	20.03694167	8.014776667 1.349091634	8.7868 6.457 8.80053	14.80084167	5.920336667	208 Pb [He] Conc.[ppb] 6.023 4.69164 7.04637

compared to the digestion samples due to the samples including 2.5x less bee pollen. Appendix 2. Concentrations of elements in the bee pollen samples from the dilute & shoot method. The adjusted average is what is